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Supersymmetry and potentials with bound states at 
arbitrary energies: I1 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, 
Oxford OX1 3NP. UK 

Received 28 October 1986 

Abstract. I t  has been shown previously that a potential V , ( s )  in one dimension which 
supports no bound states may be used as a reference potential from which, by successive 
applications of the concept of a supersymmetric partner to a given Hamiltonian, it is 
possible to find a potential V , , ( x )  which supports any specified number n of bound states 
at any chosen energies E,, j = 1 , .  . . , n. The reflection coefficient of V,, is related to the 
reflection coefficient of V,.  Various alternative representations of the potentials constructed 
by this procedure are presented. An illustrative example in which V,, is constructed by 
using a sech’ x barrier as the reference potential is discussed. 

1. Introduction 

The algebra of supersymmetry may be used to study the spectral properties of two 
related Hamiltonians paired together into a single system (Witten 1981). The existence 
of a conserved charge associated with supersymmetry in supersymmetric quantum 
mechanics implies certain specific relations between the spectral properties of the two 
members that form the supersymmetric pair. Examples of supersymmetric systems are 
discussed in a number of recent reports (for example, Bernstein and Brown 1984, 
Khare and Maharana 1984, Yamagishi 1984, Ui 1984, d’Hoker and Vinet 1984, 
Andrianov et a1 1984, Kostelecky and Nieto 1984, Sukumar 1985a, Blockley and 
Stedman 1985). 

The simplest non-trivial realisation of the algebra of supersymmetry has been shown 
(Andrianov er a1 1984, Sukumar 1985b) to lead to the result that every one-dimensional 
Hamiltonian H can have a supersymmetric partner fi such that one of the following 
spectral features is realised: either (i)  fi has the same spectrum of eigenvalues as H 
except for missing the ground state of H, (ii) H has the same spectrum of eigenvalues 
as H except for missing the ground state of fi, or (iii) the spectra of H and fi are 
identical. Explicit procedures for finding fi with any one of the abovementioned 
spectral features starting from a specific H have been given previously (Sukumar 
1985b). I t  has been shown that the well known mathematical apparatus of the inverse 
scattering method (Gelfand and Levitan 1955) may be constructed using the supersym- 
metric transformations as building blocks (Sukumar 1985~) .  As an application of this 
idea it is shown in Sukumar (1986, hereafter referred to as I )  that, starting from a 
reference potential V, which does not support any bound states, it is possible to 
construct a potential V, which supports bound states at n freely chosen energies E,, 
j =  1, .  . . , n. For positive energies the reflection coefficient of V, is related to the 

0305-4470/87/092461+21$02.50 0 1987 IOP Publishing Ltd 246 1 



2462 C VSukumar 

reflection coefficient of Vo by a multiplicative factor. It is shown in I that V, has 
vanishing reflection coefficient and a simple structure when the reference potential is 
reflectionless, i.e. when the reference system is the free-particle Hamiltonian. The 
reflectionless V, has been shown to be related to multi-soliton solutions of the 
Korteweg-de Vries non-linear equation (see also Kwong and Rosner 1985). The main 
purpose of this paper is to present some of the properties of V, when the reference 
potential Vo has non-vanishing reflection coefficient. 

The layout of the paper is as follows: 9 2 provides a summary of the results obtained 
in I for the structure of V,. The reduction of V, to an easily calculable form and 
various possible representations of V, when Vo is allowed to have any reflection 
coefficient are presented in § 3 .  The normalisation of the eigenstates of a symmetric 
V, constructed from a symmetric Vo is discussed in § 4. The results from § 3 are used 
in § 5 to construct V, when Vo is a sech2 x barrier. Section 6 contains the conclusions. 

2. Summary of results obtained in I 

Let Vo(x), -cc < x < +CO, be a potential that supports no bound states. Let Ro( k )  be 
the reflection coefficient for positive energies E = k2/2p where p is the reduced mass. 
A potential V,(x) which supports a single bound state at E ,  = - y : / 2 p  and has reflection 
coefficient 

R l ( k )  = Ro(k)(yl  - ik) / (y ,+ ik)  (1) 

may be found by following the procedure discussed in Sukumar (1985b). It is proved 
in appendix 1 that for energies below the ground state of any potential it is always 
possible to find a nodeless but non-normalisable solution of the Schrodinger equation. 
Let $o( E , )  be a nodeless non-normalisable solution of the Schrodinger equation for 
Vo at energy El. I t  is then possible to express the Hamiltonian Ho corresponding to 
V, in terms of GO(El) in the form 

Ho = & ( E , ) A , ( E , )  + El 

A,'(E,) = (2p))-'"{fd/dx+[(d/dx) In $ o ( E , ) ] } .  

HI = A i ( E , ) A ~ ( E , ) + E ,  = H,---ln J I O ( E I ) .  

( 2 a )  

( 2 b )  

where 

The supersymmetric partner to Ho is given by 

1 d2 
F dx 

(3) 

HI has a ground state at energy E ,  with eigenfunction 

&(El)= 1/$o(E,) (4) 
and positive energy reflection coefficient R , ( k )  given by (1). This property of HI has 
been shown to be a consequence of the feature that ( E l o -  E , )  and (HI - E , )  are the 
diagonal elements of a supersymmetric Hamiltonian given by the anti-commutator 

x= (0, 0'1 ( 5 )  
where 
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and 

[Q,  E]=O=[Q+, XI. ( 7 )  

By iterating this procedure it is shown in I that the potential V,, with bound states at 
energies 

= - Y:/ CL j = l , 2 , . . . , n , ~ ~ + ~ > ~ ,  (8 )  

R , ( k ) = R o ( k )  n[(YJ- ik) / (y ,+ ik) l  ( 9 )  

and positive energy reflection coefficient 

J 

may be represented by 

1 d2 
V,,= V,---IndetD 

CL dx 

where $ , (E j )  are non-normalisable solutions of 

&O(Ej = (Yj+2CLvo)40(~J) j = 1 ,  . . . , n. ( 1 2 )  

$ , ( E j )  may be chosen to be nodeless for odd values of j and to have a single node 
for even values of j (see appendix 1 for proof of the existence of such solutions). This 
choice of $ , ( E j )  ensures that the determinant of D is nodeless. It is also shown in I 
that the eigenstates of V,, are given by 

$n ( Ej 1 = Bin j =  1 , .  . . , n ( 1 3 0 )  

B = D - I .  ( 1 3 6 )  

The properties of the reflectionless V, constructed from a reflectionless V,, namely 
Vo = 0, are discussed in I. The following sections consider V,, in the general case with 
non-vanishing reflection coefficient R,  (k). 

where 

3. Representations of V, 

The representation of V,, given by ( 1 0 )  and ( 1 1 )  may be further simplified by using 
the Schrodinger equation for $, (Ej )  to write the elements of the matrix D in the form 

Use of the Leibniz rule to expand the multiple derivative of a product leads to 

Dij = (rj+2/1.Vo)Di-2j+2/1.V~o(i-3)Di-3j 

The determinant of a matrix M remains invariant when all the elements in  a particular 
row i are subjected to the transformation Mu+ Mu+Zk.i ( Y k M k j  with coefficients (Yk 
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which are independent of j. By repeated applications of the rule on the invariance of 
a determinant under transformations of the type referred to above, it is easy to show, 
using equations such as (15)  for D,], D t - l J ,  D,-,, etc, that 

(16) 
where fi has elements given by 

det D = det d 

By applying a similar argument it is easy to show that 
i, j = 1 ,  . . . , n B = ( D - ' )  . = (6-l) (18) 

since the ij element of the inverse of a matrix is expressible as the ratio of the determinant 
of the cofactor of D,, and the determinant of D. The potential with n bound states 
can thus be represented as 

1 d2 
V,, = V,---,lndet D. 

i-l dx 
The eigenstates at energies E, are given by 

$ n ( E j )  = ( f i - ' ) j n  = B j n  

c D , $ f l (  = 2 ',,$?I ( = i = 1 ,  . . . , n.  

j = 1 ,  . . . , n. 

(18)  shows that these eigenfunctions satisfy 

J J 

It is shown in appendix 2 that 
d 2  
- In det D = 2b, -c (7; + 2pv0)  - c', 
d x 2  j 

where 

and 

b, = DnJBJn. 
J 

To proceed further we define 

( a )  n odd 

It is possible to show that (151, (17)  and (21)  lead to 

cP:f;=o=cff:J; 
c P k ,  = 0 = c f f  ; g, 

k=O,  I , .  . . , $ ( n - 3 )  
J J 

k = 0 , 1 ,  . . . , $ (  n - 3 )  
I J 
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Using (13), (15) and (23)-(25) it is easy to show that 

gJ C , = C a : n - 1 i / 2 g J = C p : n - 1 ) / 2  

bn = C a, ( n + 1 ) ’ 2 f ; = C p : n + ’ i / 2 f ; + ( n + 1 ) p ~ 0 .  
J J 

J J 

Using (16) and (26)-(28), (22) may be simplified to the equivalent forms 

or 

-1ndet d2 d = 2 p V 0 + ~ / 3 ~ n - 1 ) / 2 ( P j -  1 Pk)f;-(~pjn-”’2g,)2.  (30) 
dx2 k t j  j 

Appendix 3 shows that when (26) are valid, then 

Equations (31) are also valid when a;. and (Yk are replaced by Pj and Pk. Hence (19) 
and (29)-(31) show that V,, may be represented in the equivalent forms given by 

and 

( 6 )  n euen 

It is possible to show that (15), (17) and (21) lead to 

eP:f;=o=Ca,kx 

fi,”gJ =O=C .,”gJ 

k =O, I , .  . . , t ( n  - 2 )  
J J 

k =O, 1 , .  . . , f ( n  - 4 )  
J J 

p, ( n - 2 ) / 2  g, = 1 = a;n-2i’2gJ* 
J J 

Using (13), (15 )  and (23)-(25) it is easy to show that 

cn = 2 a;”J; = c p y f ;  
J J 

b, = C a;”gJ = P;/’gJ + np V,. 
I I 

Using (16) and (34)-(36), (22) may be simplified to the equivalent forms 

(35) 

(36) 
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or 

Appendix 3 shows that when (34) are valid, then 

Equations (39) remain valid when a, and ffk are replaced by p, and Pk.  Hence (19) 
and  (37)-(39) show that V,, may be written in the equivalent forms given by 

and 

The odd  and even cases may be combined together to give the result that the 
potential with n bound states at energies E, = - y f / 2 p ,  j = 1,. . . , n, may be represented 
as 

or  alternatively as 

where $,,(E,) are the un-normalised eigenstates of V,, given by (20 )  

+n ( ) = ( fi-' ) I n  j = 1, . . , , n. 
$,,(E,) may be found by inverting the matrix d with elements (equation ( 2 1 ) )  

i odd  
i even 

i , j = 1 , 2  , . . . ,  n 

where cL0(E,) are the unnormalisable solutions of the Schrodinger equation for V, at 
energy E, chosen such that $,(E,) is nodeless for odd values of j and has a single 
node for even values o f j .  It is clear from (42 )  and ( 4 3 )  that the eigenfunctions $,(E,) 
satisfy 

if n is odd 
if n is even (44 )  

The reflection coefficient of V,, for positive energies Eh = k 2 / 2 p  is given by (9) :  

R n ( k ) =  Ro(k)  U [ ( ~ , - i k ) / ( y ,  +ik ) I .  
I 
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When V, = 0 and  &,( E j )  are chosen such that 

cosh yJx j odd 
sinh y,x j even 

j = 1,2, . . . , n 

2467 

(45) 

then 

The resulting 

r:$i( E/) - $i( 
symmetric reflectionless potential with n bound states is given by 

= ( - l ) ' + '  yj' j = 1 ,  . . . , n. (46) 

in agreement with the result obtained in equations (65) and (79) of I .  

4. Normalisation of the eigenstates of symmetric V,  

If Vo(x) is a symmetric function of x then a symmetric potential with n bound states 
can be constructed by choosing the basis functions defining D, in (17) such that Go( E,) 
is an  even function of x for odd  values of j and  an  odd function of x for even values 
o f j  Let Vn be a symmetric potential so constructed with n bound states at E, = -y : /2p ,  
j = 1, . . . , n, and unnormalised eigenfunctions 

j = 1, . . . , n. (48) 

Let Vn-l be a symmetric potential similarly constructed with ( n  - 1) bound states at 
E, = -y:/2p, j = 1, . . . , n - 1, and unnormalised eigenfunctions 

+n(Ef) = [ ~ ( Y I ,  ~ 2 , .  . . 3  Y~II;' 

$ n - l ( E j ) = [ f i ( ~ l ,  ~ 2 , * . . ,  ~ n - i ) ~ , i - ,  j=l,.. . , n - 1 .  (49) 

Since Vn, and  Vn-lr are connected by supersymmetry the eigenstates at a common 
eigenenergy E, are related by 

as shown by equations (51), (53) and (54) of I .  The constants A, may be determined 
as follows. Let 

x lim - s &(E,) = E, exp(y,x) j = 1, . . . , n. ( 5 1 )  

It is easy to show by evaluating the relevant determinants in the limit x + CO that 

Similarly 

1 

EJ 
lim G n - l ( E , )  =-exp(-y,x) j =  1,. . . , n - 1 .  (53) 

h = l . Z .  , , I - '  

Y - X  

Consideration of the x+co limit of (50) and use of (52) and (53) gives 

A, = (7:  - ?:)-I j =  1, .  . . , n - 1 .  (54) 
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It was shown in equations (50)-(52)  of I that the Hamiltonians with n and ( n - 1 )  
bound states are given by 

Use of (50 ) ,  (54) and (55)  gives 

But for any bound-state eigenfunctions cpI and  cp2  
1 s 

cplAi-Icp2 d x  = cp2A;-lcpl dx. L 
Using this relation (56)  may be written as 

(55) may now be used to obtain 

Iteration of (59) for j = 1 shows that 

When V, is a symmetric function of x, $,(E,) for all odd values of j may be chosen 
to be the same even function of x expressed as a power series with E, as a parameter. 
Examination of the determinants involved in evaluating ( then shows that 
$,,(E,+2) is obtained from $, (E, )  by the substitution E,-€,+? in d while all the 
other energies are left unaltered. By using this symmetry property, the normalisation 
integral of $,(E,) for all odd values of j may be evaluated to be 

The normalisation integral for the states with even values of j may be determined as 
follows. Iteration of (59)  for j = 2 gives 

/ 
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For a symmetric V, ,  cLo(E,) and ilro(E2) are even functions of x while I+!J~(E,) and 
J0( E , )  are odd functions of x and have a single node at x = 0. Noting that (L2( E , )  
may also be written in the form 

the normalisation integral for i+b2(E2) may be given as 

Using 

&=cy:- Y:)*o(~l)*o(&) 

it is possible to evaluate the integral in ( 6 6 )  to obtain 

(63 )  then gives 

By choosing i,bo(E,) for all even values o f j  to be the same odd function of x with E, 
as a parameter it is possible to use a symmetry argument as for the case of odd values 
of j to obtain the normalisation integral of CL,, ( E , )  for all even values of J in the form 

The normalisation integrals for the eigenstates of the symmetric potential V, are thus 
given by 

X 

$ ~ ( E J ) d x = ( ~ , I Y ~ - Y : I ) - ' ~  j = 1 ,2 ,  . . . , n ( 7 1 )  

where 

j odd 
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For the special case of V, = 0 use of (45) for t,!~~( E,) shows that the eigenfunctions of 
the symmetric reflectionless potentials obtained from (20) satisfy 

j = 1,2,  . . . , n (73) 
-Lr Y, 2 (  k f J  ) - I  

Lr 

4" n ly;-y;l 

in agreement with the result obtained in equation (A3.24) of I .  

5. The sech2 x barrier as reference potential 

In this section the procedure for the construction of V,, described in § 3 is illustrated 
by considering the barrier 

Vo = (T sech2 x (74) 

as the reference potential. The reflection coefficient Ro( k)  of the barrier (74) is given 
by (Landau and Lifschitz 1965) 

F(ik) r ( - ik - s )  r ( - i k + s + l )  
T(-ik) r ( - S )  r(S+l) 

Ro( k, (T) = - (75) 

where 

s =f[-1+ (1 - 8 p ~ ) " * ] .  (76) 

The Schrodinger equation for the barrier (74) for any negative energy E = -y2/2p 
may be transformed into the differential equation for the associated Legendre functions 
(Landau and Lifschitz 1965, Gradshteyn and Ryzhik 1965). The solution which is an 
even function of x is given by 

cpo( y, x )  = sechY x 1 a, tanh2' x 
J = o  

( y + 2 m - 2 ) ( y + 2 m  - 1 ) + 2 p a  
2m(2m - 1) 

a,,= 1 a,,, = a,,-, 

The solution which is an odd function of x is given by 
X 

@"( y, x )  = sechY x tanh x bj tanh2'x 
J = o  

( y + 2 m  - 1)( y+2m)+2pua 
2m(2m + 1) 

bo= 1 b, = b,,,-l 

A set of energies E, = - y;/2p may be chosen and the matrix b constructed using (17), 

i odd 
i even 

i , j = 1 , 2  , . . . ,  n 

where 
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0 

-1 0 -  

The matrix 6 may then be inverted. The unnormalised eigenstates $,,(E,) of V,, are 
given by the j n  elements of 6-'. Using these eigenstates the potential V,, may easily 
be constructed from (42) or (43). The reflection coefficient of V,, is given by (9) with 
R , ( k )  determined by (75) and (76). 

Figures 1-4 show potentials V, which support a single bound state at a fixed value 
of the energy, E , ,  for various values of the barrier height r~ of the reference potential. 
For u>O.125 a double hump appears in V, to accommodate the bound state. The 

I - - .  

c -  - -  

1 -5.0 -3.0 -1 0 1 0  3 0 5 0 

Figure 1. The figure shows a potential with a single bound state at energy E ,  = -0.5 
constructed from V,  = U sech' x, U = 0.1, for p = 1.0. V, i s  shown by the broken curve. 
The position of the bound state is indicated by a horizontal dotted line. 



2412 C VSukumar 

Figure 3. Same as figure 1 but with U = 1.0. 

r-----l 

Figure 4. Same as figure 1 but with U = 4.0. 

hump becomes sharper and the well becomes deeper and narrower as U increases to 
higher values. 

Figures 5-8 show potentials V, which support two bound states at fixed energies 
E ,  and E2 for various values of the barrier height of the reference potential. For the 
values of E ,  and E2 chosen in figures 5-8 a symmetric double well structure for V, is 
necessary to accomodate the two bound states. For U > 0.125 a double hump appears 
in the wings in addition to the double well and for U >  1.0 the walls separating the 
two wells become steeper and the double wells become narrower and deeper. 
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fl - 5 0  - 3 0  -10 1 0  3 0  5 0  

Figure 5. The figure shows a potential with two bound states at energies E ,  = -0.5, E ,  = -1.0 
constructed from Vo = U sech2 x, cr = 0.1, for p = 1.0. Vo is shown by the broken curve. 
The positions of the bound states are indicated by horizontal dotted lines. 

t 1 

I I 
-50 -30 - 1 0  1 0  3 0  5 0  

Figure 6. Same as figure 5 but with U = 0.25. 

6. Conclusions 

In this paper it has been shown that the potentials constructed using the algebra of 
supersymmetry in a step by step fashion by the addition of a single bound state at a 
time have simple mathematical representations. The scheme outlined in this paper 
gives a general procedure for the systematic construction of potentials in one dimension 
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I 

-5.0 -3  0 -1.0 1.0 3 0 5.0 

Figure 7. Same as figure 5 but with D = 1.0. 

Figure 8. Same as figure 5 but with D = 4.0. 

with specific spectral properties starting from a reference potential of known reflection 
coefficient. 

Appendix 1 

In  this appendix it is proved that for energies below the ground state of a potential, 
the solution of the Schrodinger equation is either nodeless or has a single node. 
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Let cpo(x, Eo),  Eo= - y i / 2p  be the ground state of a potential K cpo(x) may be 
normalised such that cpo(0) is positive. cpo(x) must be a nodeless function. Hence 
cpo(x) > 0 for all finite x. Let 

cpo(x)l,=o = 14 do(x)l,=o = b. ( A l . l )  

Let ~ ( x )  be a solution of the Schrodinger equation for an energy E = -y2/2p which 
lies below the ground state of V, i.e. y >  yo. cp(x) may be chosen such that 

cp(X)lx=O = 14 d(x)ly=o= b (A1.2) 

as it is possible to choose these two initial values freely for a Schrodinger-type 
second-order differential equation. The Schrodinger equations for cpo and cp given by 

40= (Y:+2pVObPo (A1.3) 

(P = (Y2+2P.0)cp (A1.4) 

show that 

(dldx)(cp,d-docpc)=(Y2-Yi)cpo(P.  (A1.5) 

Integration of (A1.5) using (Al.1) and (A1.2) gives 

c p o ( x ) d ( X ) - - o ( x ) c p ( x ) = ( Y 2 - Y i )  (A1.6) 

and therefore 

Integration of (A1.7) using (A l . l )  and (A1.2) gives 

(A1.7) 

(A1.8) 

(A1.9) 

(A l .  10) 

cpo(x) is positive semi-definite for all x and y2>  7:.  These conditions guarantee that 
f(x) - 1 is positive semi-definite for all positive x as iteration of the integral equation 
(A1.lO) shows that 

( A l . l l )  

The positive definiteness of f ( x )  - 1 for negative x can be established by changing 
variables from x to x ' =  -x and reducing (A1.lO) to the form 

(Al.12) 
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Hence 
f (x )  2 1 1x1 s CO (A1.13) 

and so 
cp(x) 3 cpo(x). (A1.14) 

Since cpo(x) > 0,IxI <CO, it follows that cp(x) > O,/xI <CO, i.e. p(x) must also be nodeless. 
A second linearly independent solution of (A1.4) is given by 

$(x)  = cp(x) 1, dYlcp2(Y). ( A l .  15) 

$(x)  has a node at x = xo. $(x)  has no other nodes since cp is nodeless and positive 
for all values of x. It is therefore possible to conclude that for energies below the 
ground state of a potential it is always possible to find a nodeless solution cp(x) and 
a linearly independent solution +(x)  which can be chosen to have a single node at 
any point x = xo. 

Appendix 2 

In this appendix a simplified expression for the second derivative of the determinant 
of D in (1 1) in the main text is obtained. 

It was shown in the main text ((11)-(13)) that 

i, j = 1, . . . , n d'-' 
Dij = +o( Ej)  

and 

It was shown in equation (A2.16) of I that 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 
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where 

bi = DnkBy j = 1,  . . . , n. 
k 

Hence 

T r ( f i B ) = c , - , + b ,  

where 

b, = D,kBkn. 
k 

(A2.7) 

(A2.8) 

(A2.9) 

Alternatively (14) and ( 1 5 )  in the main text may be used to give 

B,, = ( -yf + 2p V,) D, + ( i - 1 )2p VOQ - I] 

(A2.10) ( i  - l ) ( i  -2) 
2 

d'-' V, + 2pV0D,-21+. . , + 2 p -  dxl-l D1l' 

Use of (13) then gives 

( f i B ) , ,  =E (yj+2pVO)DijBji 
.i 

and so 

Tr( f i B  ) = ( -yf + 2 p  V,) . 
.i 

Comparison of (A2.8) and (A2.12) shows that 

6 ,  + c,-, = ($ + 2 p  V,). 
i 

It is easy to show from (13) that 

B = - B D B .  

(A2.14) and (A2.2) then lead to 

B.  I ,  = - Bj, - 1 - E,,c,. 

Use of (A2.4) provides 

d2 - In det D = DnjBjn + DnjBjn. 
dx2 j i 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 

(A2.15) 

( A2.16) 

(A2.9), (A2.15), (A2.3) and (A2.13) may be used to simplify (A2.16) to the form 

d2 - In det D = 26, -E ( yf + 2pV0) - c', 
dx' 1 

(A2.17) 

where 6 ,  and c, are given by (A2.4) and (A2.9) respectively. 

Appendix 3 

In this appendix four different functional relations are established. The following 
notation will be used throughout this appendix: 

(A3.1) 
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Case (i). Let n be an  odd  integer. Let J; be a set of functions which satisfy 

f f ;J ;=o k = 0 , 1 ,  . . . ,  ; ( n - 3 ) .  
1’1 

k = f ( n  - 1 ) .  
, = I  

Let 

Using (A3.3) F may be written in the form 

The terms in the double summation can be regrouped to give 

Let 

Then 

To proceed further consider 

(A3.2) 

(A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

(A3.7) 

(A3.8) 

(A3.9) 

which is valid since the terms within the first set of brackets vanish as shown by (A3.2). 
Expanding (A3.9) and regrouping terms it is possible to show that the factors inside 
the curly brackets of (A3.8) may be written in the form 

-J!- 

J k > i  Im 
{. ..}=-C 1 ( f f ~ a k ) ( ~ - ~ ) / ~ ( ( y l + a k ) f ; f k  1 ( Y / f f m .  (A3.10) 

This gives 

(A3.11) 
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The factors inside the curly brackets of (A3.11) may be simplified using the relation 

which is valid because of (A3.2). (A3.11) may then be simplified to give 
-1 -Jk 

hlmi ~k /mi 

F , - F =  { f’ J a~ n-4 Q k a l a m a t  + 2  ~ A h . ( a ~ a k ) ( n - 3 1 ’ 2  ala-.!} 

(A3.12) 

(A3.13) 

Comparison of (A3.8), (A3.11) and (A3.13) shows that after each reduction using a 
formula like (A3.9) or  (A3.12) the number of terms inside the round brackets of (A3.8) 
or (A3.11) is reduced by one. The next reduction may be accomplished using the 
relation 

(A3.14) 

It is possible to proceed as indicated until the difference between F1 and F reduces 
to just two terms: 

(A3.15) 

which can be reduced using (A3.2) to 

Therefore it is possible to conclude that 

~ f f ~ ” - 1 ) ‘ 2 $ ( a J -  k #I a k ) = c . f j a ]  k n f J  ( a j - a k ) .  

Case (ii). Let n be an  odd integer. Let gJ be a set of functions which satisfy 

a;gj = 0 k = 0 , 1 ,  ..., +(n-3 ) .  
j = l  

Let 

and  

(A3.17) 

(A3.18) 

(A3.19) 

(A3.20) 

Considering the difference between G and GI and using relations of the form 

(A3.21) 

(A3.22) 
k l  

(A3.23) 
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etc, which are valid because of (A3.2) it is possible to proceed as in  case ( i )  to show that 
GI - G = O .  (A3.24) 

Hence 

(A3.25) 

Case ( i i i ) .  Let n be an even integer and gj a set of functions which satisfy 

f: a;gj = o  k = 0 , 1 , .  . . , f ( n - 4 )  (A3.26) 
j = l  

Let 

( A3.27 

(A3.28) 

and 
n F,= gf n ( a j - a k ) *  (A3.29) 

Comparison of F and F,  and successive elimination of the terms in the difference by 
j = 1  k + j  

the same procedure as in cases (i)  and (ii) then shows that 

F ,  - F = 0. 

Hence 

c J a y ’ 2 g J  ( aJ - k + J a k ) = F g : ! J ( a J - a k ) *  

Case (io). Let n be an even integer and A a set of functions which satisfy 

CY;x=o k = 0 , 1 , .  . . , i ( n  -2).  
J = I  

Let 

and 

Proceeding as in earlier cases it is possible to show that 

e, - 6 =o. 
Hence 

(A3.30) 

(A3.31) 

(A3.32) 

(A3.33) 

(A3.34) 

(A3.35) 

(A3.36) 
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